数学联邦政治世界观
超小超大

绝对无限(番外篇章) (3-1)

绝对无限是所有序数的类,记为 Ord,尽管 Ord 不是集合,但也是传递的并且 ∈ 是 Ord 上的良序关系,我们可以很容易想象诸如 Ord+1 , Ord×Ord ,ωOrd+1CK 甚至 ℵOrd+1 这样似集合的对象。

不妨定义集合是 0-型类,而 Ord 和 V这样非 0-型类的类是 1-型类,不是 0-型类的 1-型类就叫做真 1-型类。设 T:={φ:V⊨φ} ,则 T0 中语句为 T 中语句的每个变元 xi 追加“并且 xi 是 0-型类”,以此类推, Tα 中语句为 T 中语句的每个变元 xi 追加“并且 xi 是 α-型类”

若称 V[α] 是由所有 α-型类构成的宇宙,那么至少得有 V[α]⊨Tα 并且{V[β]:β<α}∈V[α] ,这样才能在 V[1] 中见证开头所述的那些对象。

类似的, Ord[1] 是 V[1] 中满足“ x 是传递的并且 ∈ 是 x 上的良序关系”的 α 构成的 2-型类。

V 是由 0-型类构成的宇宙& 1-型类。

V[α] 是由 α-型类构成的宇宙& α+1-型类。

对于极限序数 λ , x 是 λ-型类当且仅当 x∈V[λ] 。

最终,超越这一切的大全就是终极类Ⅴ

Ⅴ:={x:∃y(x∈y)} ,称 y 是终极类,当且仅当不存在 x ,使得 y∈x 。

可知对任意 Ⅴ

Ⅴ 中的“传递的并且 ∈ 是其上的良序关系的”α ,均有

V[α]∈Ⅴ 。

尽管如此,却还是有 Ⅴ∃x(Ⅴ∈1x) ,∈ 只是 ∈1 的一种限定,在 Ⅴ

Ⅴ 之上仍有

Ⅴ[α] ,其中 α 是 1-传递的并且 ∈1 是 α上的良序关系。

而称 y 是究极类,当且仅当不存在 x ,使得 y∈1x 。

显然, ∈α 比起

Ⅴ[α] 更加无止境,而其终极,便是 Λ:={x:x=x} ,因此

Ⅵ 都不可为 x ,而是 X 或 x1 ,x0,…,xn 和 x01,…,xn1 是两组不同的变元,使得 ∀x∃x1(x=x→x∈x1) 成立。

此外,与前面类似,适用于 x1 的谓词是 ∈α1 。

最终, Θ:=⋃{{xα:xα=xα}:α∈θOrdθ} 囊括了这一切的一切。

然而,即使是在 Θ 中,也不存在α∈θOrdθ ,使得存在双射函数 f:α→P(ω) 。

但在含有非标准 ω⋆ 的模型 Ψ 中,ω∈Ψω⋆ 只是一个有穷序数, 而有穷序数的幂集当然存在基数并且仍是有穷序数,换言之你可以在 Ψ 中找到P(ω) 本不存在的“基数”,特别地,对任意 α∈θOrdθ 都存在 P(ω)={x:x⊂Ψω}的一个良序子集 A ,使得 α 是 A 的序型,尽管大于 ω 的 α 在 Ψ 中不被认为是序数,但 ∈θ⊂ΨVω⋆2 。

尽管 ω⋆ 对于 Θ 而言是非标准的,但对于 Ψ 而言 ω⋆ 就是真正的自然数集,那么自然也会存在对应的非标准ω⋆⋆∈Ψ1Ψ1 ,并且同样特别地有∈Ψ⊂Ψ1Vω⋆⋆2 。

感觉太草了还是修改下

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

暗心,小暗他喜欢我? 连载中
暗心,小暗他喜欢我?
呆猫呀
暗算ⅹ心机不管你喜不喜欢我,我必定不会放弃!!__暗算
1.0万字6个月前
纳命来还(前世今生只为情下部) 连载中
纳命来还(前世今生只为情下部)
凤月儿
《前世今生只为情》下部。方天与景仪因情伤命。转世重生后,终得相见。纠结一场拿命还情的恩怨大戏。遒阳怎肯坐视,四大神使又在何方?最终只能换一个......
65.4万字6个月前
时空破碎之际 连载中
时空破碎之际
cui皮鸡
一次高考的失利,竟让整个世界改变,透视术、空间转移、复制术、读心术……路雨叶不曾想到,这个世界竟是如此玄幻!她更想不到的是,她居然在阴差阳错......
34.3万字6个月前
严厉哥哥(老公) 连载中
严厉哥哥(老公)
凤星
严厉哥哥作死
0.2万字6个月前
非人哉相处日常 连载中
非人哉相处日常
傲娇兔本兔
五个大佬妖怪的宠溺,与妖怪的相处日常。
23.1万字6个月前
宇宙亿年的爱恋 连载中
宇宙亿年的爱恋
芊小樱
已完结,此文已废,别看巨烂,六年级写的,巨巨巨烂好好好,高二的我,直接黑脸自己几年前的文了,直接开废
28.6万字6个月前