数学联邦政治世界观
超小超大

(数学解释)文章

决定性公理

如果采用ZF+AD(决定性公理)系统,决定性公理可以每个实数子集都可测。

决定性公理的一致性相当于无穷个伍丁基数的一致性。

要想证明不可测集的存在性,必须依赖AC(选择公理)。

不可描述性

从不可达基数起这些基数全是通过对V绝对不可描述的扩展得到的,不过数学上的不可描述不是你们说的这些都无法成为X的描述,只有我独家可以。

而是这些描述不仅X有,Y也有。比如一个世界中各方面都很像现实世界可以说包含现实,但实际这些特征都不只是现实世界独有,一堆虚构世界都照样有,所以光靠包含这些描述并不能真正占有现实世界,现实世界就是不可描述的。

比如,如果ω就是大全,那么“对于一切n,都存在一个m使得n﹤m”是ω中的一个基本事实,但对于任何一个有限的世界,都存在一个极大数U,但对于U是不存在一个大于它的数。

所以“对于一切n,都存在一个m使得n﹤m”是一个只有ω才具有的描述而不被其下的小世界具有的,所以ω可以被这句话描述,反之,“存在一个极大数或最强者”是任何有限世界都具有的,无法特定描述包含某个有限世界。

所以对于那些大基数的大往往都是通过这种方式体现:假设大基数公理,我们推导出一个十分强大的性质p,但由于k的不可描述性,k之下也存在满足这个性质的a,并且往往会有很多,所以这个用来描述k非常大的性质其实还是不足以描述k之大。

不动点

凡事皆有原因,对任意x,均有一f(x),原因亦又其原因,对f(x)亦存在f(f(x)),并且,身为原因的一方优先于其结果,比如上帝是世界的原因优先于世界,记f(x)>x,而所谓的不动点,f(x)=x,则表明其是自身的原因。

数学联邦政治世界观提示您:看后求收藏(同人小说网http://tongren.me),接着再看更方便。

相关小说

惊世狂妃:皇叔一宠到底 连载中
惊世狂妃:皇叔一宠到底
庄庄2
洞房花烛夜被休,丈夫诬陷她和小叔子滚床单,渣爹毒死她,渣妹还要将她分尸?不是吧不是吧?都这个年代了,还有人受这窝囊气呢?21世纪戏精影后降临......
272.5万字7个月前
一场发颠盛宴 连载中
一场发颠盛宴
花落朝汐
封面是我推!
0.9万字7个月前
啵叽小铺:壁纸哟 连载中
啵叽小铺:壁纸哟
公元前1110
喜欢存图片壁纸,手机装不下了,发出来分享下,各位有看上眼的随便抱。ps:都是在网上下载的,如果涉及版权问题,请通知下,我好删。
0.1万字7个月前
缘分?还是巧合? 连载中
缘分?还是巧合?
萧蓝星
双男主的,敬请期待,头像是小红书上的哦
1.7万字7个月前
觊觎王叔美貌许久 连载中
觊觎王叔美貌许久
吃货部部长
人前战斗力爆表,腹黑毒舌的女帝,面对王叔,则是说不出话变成结巴的小姑娘。人前清冷禁欲的王叔,面对小姑娘,总是眉眼含笑,变成循循善诱的撩人高手......
1.2万字7个月前
命运的轮廓 连载中
命运的轮廓
暗夜玫瑰女爵
这是一个五行的世界,看看会发生什么有趣的事情呢
20.3万字7个月前